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% The Comprehensive Ring Current Model (CRCM)

=  History

=  Model logic

=  Model formulation
=  Numerical schemes
= Code architecture

=  Model input/output

**  Model the ring current enhancements during the storm on
12 August 2000.

** Model the O+ enhancements during a substorm

* MHD-CRCM-Ionosphere coupling and challenges



The Comprehensive Ring Current Model (CRCM)

Fok Ring Current Model

Empirical E field
Full pitch-angle distribution
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The Comprehensive Ring Current Model: Model Logic
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The Comprehensive Ring Current Model: The Equations

Equation of ring current ion distribution

Iy iy 1\ fs
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fo= fs(t,)»i,qbi,M K ) : phase space density of ring current ion

losscone

A; , ¢; : magnetic latitude and local time at ionosphere

M : magnetic moment

K :longitudinal invariant

<)li >,<¢l> : drift velocities (convection + magnetic drift + corotation)
O, : charge exchange cross section of s and H

<n H> : bounce - averaged H density

T, : bounce period

Equation of ionospheric potential

Ve (—E . V(I)) = Jj; sin/

® : ionospheric potential

2 : conductance tensor
I : magnetic dip angle
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J|; : parallel current at ionosphere =



The Comprehensive Ring Current Model: Numerical Schemes
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Exact solution, f

Conservation Law, Flux Limited Scheme
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The Comprehensive Ring Current Model: Code Architecture

Environment: Initial distribution function

Linux f (f — O)
intel Fortran compiler .

Specification of magnetic field

Calculation of electric field

Main
Program

Calculations of drift velocities
Specification of boundary distribution

/\

Update distribution function, f,( = ¢ + A7)




The Comprehensive Ring Current Model: The Input

Dst, Kp: Kyoto University Geomagnetic Data Service

Shifted solar wind, IMF data: ACE or WIND satellite
Distribution at the nightside boundary (8-10 RE):
MHD or

Nps(t) = 0.025 Nsw(t-3hr) + 0.395 cm”-3

kT(t) =0.019 Vsw(t-3hr) - 3.65 keV

Magnetic field model: T96, TO4 or MHD models

Ionospheric potential at polar boundary: Weimer model

Conductance: background conductance + auroral
conductance (Hardy model).



The Comprehensive Ring Current Model: The Output 1

CRCM Output: 3-dimensional Ion Flux

Equatorial flux
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The Comprehensive Ring Current Model: The Output 2
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The Great Magnetic Storm in August 2000
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CRCM Reproduced the Post-midnight Enhancement

09:00 UT, 12 August 2000
32 keV H*

Inverted HENA H+ flux  Simulated flux from CRCM Simulated flux from Weimer

N \

Al




Simulation of H+ and O+ Distributions During a Substorm

* A modeled substorm by the Lyon-Fedder-Mobarry (LFM) model.

* Tracing trajectories of 100 millions H+ and O+ released from the solar
wind, polar region and the auroral zone in the LFM fields.

* From the test-particle calculations, H+ and O+ characteristics (density

and velocity) in each 1 RE? volume element of the magnetosphere are
established.

* lon distributions in the inner magnetosphere are calculated by the
Comprehensive Ring Current Model (CRCM) with the boundary
conditions specified by the test-particle runs.

* Energetic Neutral Atom (ENA) emissions are calculated from the 1on
fluxes output from the CRCM.

LFM MHD model ---> Delcourt’s particle code ---> CRCM
---> Jon and ENA fluxes



LFM-CRCM Reproduce the O+ Enhancement During a Substorm
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CRCM Coupling with the OpenGGCM

OpenGGCM CRCM

BV, ®,n T
<
P(Py, P), J,
B: magnetic field P: pressure from ring current particles
V: flux tube volume per unit flux J): field aligned current

@. : Ionospheric potential
n: average density in the flux tube
T: average temperature in the flux tube




CRCM Coupling with the Ionospheric model

CRCM

CTIPe

CTIP NEUTRAL TEMPERATURE (DEG. K) M20031028

J,: field aligned current

¢,, : energetic particle precipitation

L, : plasmapause location
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Plasmasphere Model Embedded in the CRCM

DN _Fy+Fs
Di B,

I

where 1)/Dt is the convective derivative in the EXB frame
of the flux tube, N is the total ion content per unit magnetic
flux, ¥, and F are the ionospheric fluxes in or out of the
flux tube at northern and southern ionospheres, and B, is the
magnetic field at the ionospheric foot points of the flux tube.
The equatorial plasma density is assumed to be equal to the
average density in the flux tube.

The net flux of plasmas in or out of a flux tube depends
on the instantaneous content of the flux tube. The particle
flux on the dayside, ¥, is given by:

(7)

n_..—Nn
F — Sl F {8]
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where n__ is the saturation density [Carpenter and Anderson,
1992], n is the plasma density in the flux tube, and ¥ is
the limiting flux from the ionosphere [Chen and Wolf, 1972].
The nightside flux, F', is approximated by:

_NB, ©)

F, =
T

where ¢ is the downward diffusion lifetime on the nightside,
which is assumed to be 10 days.



Plasmasphere Dynamics Driven by CRCM Electric Field
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Challenges in Code Coupling

Potential solver in the OpenGGCM must be extended to low
latitude to ~ 12°.



